RAPIDS: Data Science on GPUs
Event Type
Machine Learning Day
AI/Machine Learning/Deep Learning
Big Data Analytics
Clouds and Distributed Computing
Parallel Algorithms
TimeWednesday, June 19th12:07pm - 12:30pm CEST
LocationPanorama 3
DescriptionGPUs and GPU platforms have been responsible for the dramatic advancement of deep learning and other neural net methods in the past several years. At the same time, traditional machine learning workloads, which comprise the majority of business use cases, continue to be written in Python with heavy reliance on a combination of single-threaded tools (e.g., Pandas and Scikit-Learn) or large, multi-CPU distributed solutions (e.g., Spark and PySpark). RAPIDS, developed by a consortium of companies and available as open source code, allows for moving the vast majority of machine learning workloads from a CPU environment to GPUs. This allows for a substantial speed up, particularly on large data sets, and affords rapid, interactive work that previously was cumbersome to code or very slow to execute. By keeping all data analytics tasks on the GPU and minimizing redundant I/O, data scientists are enabled to model their data quickly and frequently, affording a higher degree of experimentation and more effective model generation. Further, keeping all of this in compatible formats allows quick movement from feature extraction, graph representation, graph analytic, enrichment back to the original data, and visualization of results. RAPIDS has a mission to build a platform that allows data scientist to explore data, train machine learning algorithms, and build applications while primarily staying on the GPU and GPU platforms.
Manager AI Developer Technology